Sl
" R

NG1-22140

mmmmmm

Robert L. Forward
Forward Unlimi%
Malibu, California 90265-7783 Usa

Century are reviewed. The subjects covered include: electric, nuclear fission,
nuclear fusion, antimatter, high energy density materials, metallic hydrogen,
laser thermal, solar thermal, solar sail, magnetic sail, and tether propulsion.

INTRODUCTION

Chemical rockets have opened up space, landed humans on the Moon, put
robotic landers on Venus and Mars, and sent flyby probes past all the major
Planets and moons in the solar system. All this despite the fact that any
physicist can prove than any known chemical fuel doesn't have enough energy
ocontent to raise even itself into orbit, much less take any payload with it,
Propulsion engineers proved the physicists wrong by designing multiple stage
vehicles with extremely high mass ratios that reached 622:1 for the Saturn V

moon rocket liftoff mass vs. the Capsule mass that parachuted back to the
Earth's surface.

If the United States decides it wants to construct a Space defense, set up
a lu~ar base, or explore Mars, then chemical rockets can do those jobs. But
because of the relatively low specific impulse of chemical propellants, and the
high overall mass ratios they imply for these difficult missions, the cost for
accomplishing these tasks will be so high it is very likely that the United
States will decide not to do the mission at all. If we are going to return to
the Moon, explore Mars, and open up the solar system to rapid, economical
travel, we need to find a method of propulsion that is an improveme. t over
standard chemical rocket propulsion. That is the goal of that amorphous field
of aerospace engineer ing called “advanced Space propulsion”.

If the public can be sold on the idea of using nuclear propulsion for
future space missions--fine. Proceed using that technology and ignore the rest
of this paper. I Suspect, however, that despite its real lack of danger and
its great savings in cost and time, the nuclear rocket will not be a
politically viable method of Space travel. I will therefore write the rest of
this paper and I encourage you to read it.




Nuclear Thermal Propulsion

Nuclear thermal propulsion is an advanced propulsion technology capable of
producing thrust-to-weights greater than unity at high specific impulses of
typically 825 seconds (nearly twice that of liquid-oxygen/liquid-hydrogen) .
Nuclear rockets were demonstrated to be feasible in the ROVER and NERVA solid
core fission reactor test programs from 1959 to 1972, but unfortunately they
were killed for political and budgetary reasons before they ever got off the
ground. A summary of nuclear thermal rocket development and testing experience
is covered in reference 1.

Fusion Propulsion

Since the nuclear fusion process typically corverts three times as much mass to
energy as the nuclear fission process, it has -ong been recognized that fusion
fuels are much more energetic than fission fuels. Fusion propulsion is a
wonderful idea, but its time has yet to coms. Researchers still have not
demonstrated a self-sustained controlled fusior. reaction on the ground, and the
reactor designs presently being funded by the Department of Energy are more
suitable for massive power plants than lightweight rocket engines. That
doesn't stop the advanced propuision advocates from looking at new fusion
propulsion concepts and designing new, lightweight fusion rockets. Whether
these lightweight designs can ever be made self-sustaining is problematic,
considering all the work put in on their larger power plant cousins.

Robert W. Bussard at EMC2 has proposed fref. 2) a low thrust fusion
electric propulsion system th:t uses his Riggatron compact tokamak fusion
reactor design designed operaie on the difficult D-D fusion reaction. This
reaction produces tritium, helium-3, and a fast neutron. The neutrons escape
to space, while the hot (10-40 keV) tritium and helium-3 plasma is extracted at
30 atm pressure and mixed with a large amount of hydrogen gas diluent
propellant to produce a high specific impulse exhaust. Bussard alsolfpeculates
on an "electrostatic fusion propulsion" system using the reaction p+ ~B-»3 4He.
In principle, the fusion product energy can be converted directly into electric
power by causing the charged helium ions to expand against an electric field.
This would result in a fusion-electric propulsion option with high specific
impulse and high thrust.

V.E. "Bill" Haloulakas at McDonnell-Douglas and Bob Bourque at General
Atomics carried out an Air Force Astronautics Laboratory sponsored study
(ref. 3) of a D-3He fusion rocket using pulsed translating compact toroids that
borrows from the DoE spheromak program. Again, thermal energy from the plasma
heats a hydrogen propellant to obtain the optimum specific impulse.

In a combination of two technologies, Cerald Smith of Penn State has shown
that antiprotons impinging on uranium atoms create fission nearly 100% of the
time, releasing 180 MeV of fission fragment energy in the target. Under JPL
sponsorship, Smith is now studying the use of small amounts of antimatter to
trigger fission in the uranium shell of a pellet, which in turn will trigger
fusion in the D-T mixture in the center of the pellet.
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Antiproton Annihilation Propulsion _
Antimatter propulsion is one of the long rance, high risk, high payoff ~
pPropulsion technologies. A series of studies (ref. 4 to 9) have shown that

antimatter propulsion is not only physically and technologically feasible, it

can be both cost effective and mission enabling. When antiprotons meet normal

protons, all of the mass of hoth particles is released, not as gamma rays, but

as elementary particles called pions. Two-thirds of those energetic particles

are charged, and studies have shown that it is possible to extract a

significant percentage (30-50%) of the energy as thrust (see Fig. 1). The

optimized mass ratio of an antimatter rocket for any mission is typically 3:1,

independent of the antimatter energy utilization efficiency or the mission V.

This low mass ratio enables missions that cannot be done using any other

propulsion technique. The amount of antimatter needed for all missions within

the solar system is measured in milligrams.
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Fig. 1 - Schematic of Generic Antimatter Rocket

For example, Giovanni Vulpetti of Telespazio (ref. 10) has designed a re-
usable SSTO antimatter powered vehicle with a dry mass of 11.3 tons, payload of
2.2 tons, and 22.5 tons of propellant for a lift-off mass of 36 tons (mass
ratio 2.7:1). This vehicle can put 2.2 tons of payload in GEO and bring back a
similar 2.2 tons, while using 10 milligrams of antimatter. Moving 5 tons of
payload from low Earth orbit to low Martian orbit with a 18 ton vehicle only
requires 4 milligrams of antimatter.

The only source of low energy antiprotons is at CERN, in Switzerland. But
Fermi National Accelerator Laboratory or Brookhaven National Laboratory could
be modified to produce low energy antiprotons for less than $25 million. Ted
Kalogeropolous at Syracuse has shown that present production quantities of
antiprotons already are sufficient for non-destructive evaluation of rocket
nozzles, as well as imaging and treatment of cancer tumors. Brian Von Herzen

has formed the Antimatter Technology Corporation to commercially develop these
medical applications.
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The RAND Corporation has sponsored two Antiproton Science and Technology
workshops (ref. 11) that found no showstoppers to antimatter propulsion, but
determined that producing adequate quantities (grams per year) would require
two successive generations of dedicated antiproton production facilities, a
pPilot plant to prove economic feasibility, followed by a large production
Plant. Realistically, this will take 30 years and 30 billion dollars, but it
could save many hundreds of billions in the cost of future national space
initiatives.

The present experimental effort in the field is concentrated on the capture
and storage problem. Gerald Gabrielse of Harvard led an international team to
CERN, captured 60,000 antiprotons in a cryogenic, ultrahigh vacuum
electromagnetic trap no larger than a demitasse cup, and kept them trapped for
50 hours (ref. 12). The next step is adding positrons and making antihydrogen.
The Air Force Astronautics Lab is looking into the growth of charged
antihydrogen cluster ions as a method of condensing the antihydrogen while
maintaining it in a trap. Under JPL sponsorship, George Seidel at Brown
University is solving the problems of levitating milligram sized balls of
antihydrogen ice. Since the electromagnetic and mechanical properties of
hydrogen and antihydrogen are the same, the research is being carried out using
normal hydrogen.

Antimatter rockets are a form of nuclear rocket. Although they emit
insignificant amounts of neutrons, and the engines do not present a long term
radiation hazard as do nuclear thermal rocket engines, they do emit gamma rays
when operating, and require proper shielding and stand-off distance
precautions. Unfortunately, the word "antimatter" still evokes raised
eyebrows, mental images of Star Trek, and stifled giggles from upper level
decision makers in the advanced propulsion branches of NASA and the Air Force.
If they would read the scientific literature and be willing to consider
technologies other than those that will produce results during their short time
in office, they would find a new propulsion technology that could cpen up the
solar system.

EXOTIC CHEMICAL FUELS

High Energy Density Materials (HEDM) is the new Holy Grail of the chemical
propulsion community. All the chemical elements are known, and nearly all the
possible combinations of those elements into molecular compounds are known.
Over the centuries since the Chinese invented gunpowder, there has been a
continuing life-or-death motivation to find the most energetic of those
compounds for use in propelling projectiles and rockets. To date, the most
energetic fuel we have (that isn't deadly poisonous) is liquid-oxygen/liquid-
hydrogen, which produces a maximum specific impulse of 500 seconds. Some would
say there are no new chemical propellants to be found. The goal of the HEDM
program is to somehow find a new chemical material with both a high energy
density and a low molecular weight.
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The major HEDM effort in the United States is at the Applied Research In

i atory, with

another large effort in basic research being funded out of the Air Force Office
of Scientific Research. A 1984 outgrowth of Project Forecast II, the Air Force
HEDM program is putting more than $5 million a year into 50 RsD projects around
the world. They hold annual &ntractors conferences where the results of the
previous year are shared with the research community (ref. 13-15), There are a
number of ways to increase the energy density of a fuel: Add light metals as
atoms or small clusters, trap the energy of an excited electronic or

vibrational state, force molecules to form highly strained bonds, and condense
the material into a denser form.

Metastable helium fuel, made of electronically excited helium atoms (the
easily-formed active ingredient in a helium-neon laser), has a projected
specific impulse of 3100 seconds. The practical lifetime of metastable helium
is less than one second, although theory pProjects an ideal lifetime of eight
years. Early in the HEDM effort, Jonas Zmuidzinas of JPL investigated
variations invlving metastable helium molecules and solid metastable helium

metal, with no positive results. No active rescarch in this area is known of
at this time.

Tetrahydrogen (an excited state mlecule with four hydrogen atoms in a
tetrahedron-shaped mlecule) initially also looked promising, but detailed
calculations on large computers showed it had a rapid-acting decay channel,
verifying why it is not found in nature. The study of this system has led to
other candidates, such as a-N20y (asymmetric nitrous peroxide), LisH, FN3, and
B2Bep. Theoretically, B2Be has a heat of formation of 238 kcal/mole and when
unimolecularly decomposed gives a specific impulse of over 600 seconds. FN3
has been prepared, is stable at low temperatures, and in addition to being an

interesting monopropellant, also seems to have applications as a short
wavelength chemical laser fuel and a high explosive!

Spin-polarized atomic hydrogen with a potential specific impulse of 2100
seconds has been produced in the laboratory by Daniel Kleppner of MIT in
quantities large erough to cause damaging explosions in cryogenic glassware,
but the lifetime of the atoms decreases drastically with density, due to an
increase in three-body recombination oollisions. Unless a way is found around
this problem, it will not produce a usible fuel.

Unconventional molecules with "strained" bonds, such as variations on
cubane (a cube made of carbon atoms with 90 degree bonds instead of the normal
180 degree linear carbon bonds) are being studied, both by supercomputers and

test tube. Something may come of this research, but the increase in specific
impulse over that of LOX-hydrogen will not be great.

Metallic hydrogen, a dense form of atomic hydrogen with a specific impulse
of 1700 seconds and a density of 1.15 g/cc (compared to 0.07 g/cc for liquid
molecular hydrogen), looks promising. H.K. Mao and R.J. Hemley at Carnegie
Institution have used diamond anvil presses to apply pressures up to 300 GPa
(3 Mbar) to micrometer sized samples of molecular hydrogen, trying to turn it
into a superconducting metal. They have reported darkening of the sample
(ref. 16), indicating absorption of light, but further work is needed to
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determine if it is a partially conducting form of molecular hydrogen or the
desired metallic atomic hydrogen. Their darkened sample returned to its normal
state when the pressure was released.” Similar work, sponsored by the AF
Astronautics Laboratory, is also underway by Isaac Silvera at Harvard.

Even if metallic hydrogen can be formed at high pressure, no one knows what
will happen when the pressure is released. Some theorists predict it will be
metastable, and stay in the dense metallic form. (Diamond is a metastable form
of graphite formed at high pressure but stable at low pressure.) Other
theorists predict it will rapidly revert to the molecular form of hydrogen. If
it remains stable at some pressure substantially less than that necessary for
form it, there is a lot of engineering to be done to move from micrometer sized
batches to continuous flow production of tons per day, but with a specific
impulse of 1700 seconds, metallic hydrogen will do everything for space travel
that beamed laser power, nuclear thermal, and antimatter rockets ocould do, and
be a lot cheaper and safer.

Magnetic Engines and Nozzles

Nearly all advanced high thrust, high specific impulse rocket concepts that use
high power electromagnetic thrustors, metallic hydrogen or metastable helium
fuels, beamed laser or microwave power, fission, fusion, or antimatter energy;
in fact, any rocket technique that produces thermalized propellant exhausts
with specific impulses above 1500 seconds, all have the same problem. The high
energy exhaust from any of these processes will produce a blazing plasma that
will melt the reaction chamber and nozzle if they are made out of ordinary
refractory materials. One solution is to make the enginc and nozzle out of
magnetic fields. There are two ongoing experimental research efforts on
magnetic nozzles to handle these high density, high temperature plasmas. One
by Jce). Sercel at Caltech sponsored by JPL, and one by Ted Yang and astronaut
Franklin Chang-Diaz at MIT sponsored by JPL and AFOSR. Some recent studies
(ref. 17), however, have uncovered a potential problem. Plasma constrained to
an axially symmetric flow by an axially symmetric magnetic field will
experience a resistive drag as it tries to axially detach itself from the
radially diverging magnetic field lines. This drag will be transmitted to the
vehicle through the magnetic field ocoils. Research in the area of magnetic
field assisted reaction chambers and exhaust nozzles needs to be continued and
expanded. Otherwise, we may find that we have developed a new propulsion
energy concept without having the means to convert that propulsion energy into
propulsive thrust.

LIVING WITHOUT ROCKETS AND LIKING IT

If in the next few years space nuclear propulsion proves to be politically
unpalatable, and the HEDM programs do not produce a new chemical fuel with a
significant increase in specific impulse over liquid-oxygen/liquid-hydrogen,
then those in charge of the future of this nation's space programs are going to
face a harsh reality. Our future in space can only be assured if we give up
our dependence on self-contained rockets. A rocket not only has to carry its
payload, but it must also carry its engine, its energy source, and its reaction
mass. If we want rapid, eoconomical space travel within the solar system, we
must develop and demonstrate new technologies that are not rockets and are not
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limited by the exponential mass growth of the rocket equation. For tunately,
there are plenty of cardidates. Some examples are: beamed power laser
Propulsion, solar ther.aal Propulsion, solar sails, magnetic sails, and tethers.
Some do not carry their engine, some do not carry their energy source, some do
not carry their reaction mass, and some do without all three.

LASER THERMAL PRCPULSION

Beamed power laser propulsion received a big boost in the past few years.
Since 1987, spro has sponsored a two million dollar per year research program

(LINL). Most of the effort has focussed on the nozzle-less planar thruster
originally suggested by Arthur Kantrowitz (ref., 18). The payload sits on a
solid block of aklative propellant such as Plastic or water ice (see Fig. 2).
An "evaporation" laser pulse ablates a few-micrometer-thick layer of
propellant, forming a thin layer of gas. a second laser pulse then "explodes"
this gas layer, pProducing thrust on the Plate of propellant. The process takes
a few microseconds and is repeated at 100-1000 Hz rates. an important feature

into a near-circular orbit without requiring an apogee kick motor. The vehicle
is steered from the ground by moving the laser beam off the center of the base
Plate, and so does ot need an onboard quidance system. The payload size
depends on the laser power; 20 MW can launch a 150 kg vehicle carrying a 20 kg
payload. Higher powers can launch proportionately larger payloads. Peak
accelerations are Comparable to those of chemical rockets.

conducted at several industry and government laboratories. The double-pulse
thruster concept works, producing high thrust efficiency and specific impulses
Up to 800 seconds. The actual thrust efficiencies obtained to date are only
about 10%. The LINL-SDIO program had hoped to use the induction linac fee
electron laser (FEL) proposed by LLNI, for SDIO tests at White Sands to do high-
Power suborbital (and possibly orbital) launch tests. SDIO has now decided to
build a lower power RF-linac FEL, which puts out a poor pulse format for pulsed
laser propulsion.

"flame" sustained by laser light focused in the center of a flowing stream of

free-electron-laser that produces a 0.1 ms burst of 10 PS pulses separated by
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Fig. 2 - Schematic of Generic Flat Plate Laser Rocket




e i it o e R

Herman Krier and Jyotirmoy Mazumder of University of Illinois at Urbana-
Champaign have recently achieved a very promising 81% absorption efficiency and
a 72% thermal efficiency with 7 kW of CO2 laser power into a 2.5 atm hydrogen
plasma flowing at 10.3 m/s. Leik Myrabo of Rensselaer Polytech (ref. 21) is
investigating a 300 kg launch mass Lightcraft Technology Demonstrator that
rides up a laser beam from a 100 MW-class ground-based free-electrun-laser.
The laser power heats scooped air in the atmosphere and onhoard prope.lant in
space, pushing the 124 kg spacecraft into orbit.

Laser powers as low as 1 MW would useful for LEO-GEO orbit raisirg without
relay optics. 10-100 MW lasers can launch small payloads from the ground.
With up to 100 launches a day, a 20 MW, 20 Ry payload launcher could place
several hundred tons in orbit pcr year. Low gigawatt lasers could launch
multiton spacecraft with the same ease that present multigigawatt chemical
rockets do. Laser rockets will have better payload fractions since the heavy
power plant is left on the ground and the higher specific impulse results in
lower propellant fractions. Although gigawatt lasers are not off-the~shelf
items, there is no doubt they could be built if the need was strong enough.

SOLAR THERMAL PROPULSION

One method of obtaining power and propulsion in space is to use large
inflated concentrating mirrors to gather and focus solar energy onto a light-
absorber which converts the solar energy into thermal energy. The thermal
energy can be used to operate a heat engine to produce electricity, or it can
be used to heat propellant (typically hydrogen) which can then exhausted to
produce thrust. The major effort in this area is being sponsored by the Air
Force Astronautics Laboratory (AFAL). Their program (ref.22) has proceeded
through the research phase and is now directed toward flight tests in the late
t 1990s. In the mid 1980s, Rocketdyne built a small thrustor for AFAL consisting
l

of a cylindrical cavity lined with rhenium tubing through which flowed hydrogen
gas. Sunlight focused into the cavity from a 25 kW solar facility at AFAL
produced 4.45 N of thrust at a measured specific impulse of 820 seconds.

AFAL is now investigating two advanced forms of thrustors. One uses a
porous disk heat exchanger with a series of stacked discs of varying optical
absorptance but constant hydrogen flow rate. The other is a directly heated
gas ooncept where, similar to the CW laser propulsion exper iments, the solar
energy is absorbed in a solar sustained plasma "flame" in a flowing gas.

In the mid-1980s, u'Garde constructed a three meter on-axis diameter
demonstration model inflatable concentrator for AFAL. The measured
concentration ratio was a very respectable 12,000:1. More recently, a 4 by 6 m
off-axis inflatable reflector was manufactured with a concentration ratio of
10,000:1. New fabrication approaches seem to indicate that full-sized, off-
axis 30 m diameter concentrators are in hand. The design goals for the
Astronautics Laboratory orbital transfer solar thermal propulsion system are:
two mirrors of 30 m projected diameter delivering 1.5 MW of thermal power at a
concentration ratio of 10,000:1 and two thrustors operating at a specific
impulse of 900 seconds and 222.5 N thrust (445 N total).

19




SOLAR SAILS

Solar sails are large, lightweight reflectcis attached to a spacecraft that
use light pressure from solar photons to obtain thrust. By tilting the sail to
change the force direction, the light pressure can be used to increase the
orbital speed of the spacecraft, sending it outward from the Sun, or decrease
its orbital speed, allowing it to fall inward toward the Sun. Although the
thrust available from sunlight is small (39 N/kmz), the solar sail never runs
out of fuel. Over a long enough time, the small thrust can build up into
extremely high /\Vs, allowing solar sails to take on missions that cannot be
done by vehicles limited by the exponential growth of the rocket equation. A
solar sail is ideal for shuttling of interplanetary cargo, since no refueling
is required. Because the acceleration levels increas: dramatically as the sail
gets closer to the Sun, the solar sail exhibits tremendous per formance for
Mercury or Solar Probes, and many missions to the outer planets often benefit
from an initial inward trajectory. (This was particularly true for the
rendezvous mission to Halley's comet in its retrograde orbit.) Another ideal
mission for a solar sail is a multiple small body rendezvous mission to the
asteroid belt. Solar sail "tugs" can then be sent out to drag the more
promising asteroids into an Earth or Mars orbit. Once the "pipeline" from the
asteroid belt is full, the long transit time of solar sails hauling large
cargos becomes academic.

In 1976-77, JPL carried out detailed engineering studies (ref. 23) on a
square sail and a 12 blade "heliogyro" sail designed to rendezvous with
Halley's Comet, not just fly by at high relative speed. The solar sail lost to
solar electric propulsion, which in turn lost to the budget cutters. Solar
sail studies wers kept alive in the 1980s by Robert Staehle and a volunteer
group of Los Angeles area engineers, They formed the World Space Foundation,
which built the first solar sail in 1981. This "brassboard" model was deployed
on the jround in order to confirm the packaging and deployment configuration.
Tney presently have an engineering development model in design prototype form
and are looking for a piggyback launch in order to verify the deployment
procedure and fly a test mission to he Moon.

In 1989 the Columbus 500 Space Sail Cup race was announced. The purpose is
to launch three or more solar sails into high earth orbit where they will
undertake ‘o travel to the Moon, and perhaps to Mars. The three lead vessels,
named after the Nina, Pinta and Santa Maria, will come from three continents.
One from Europe--the origin of Columbus's voyage, one from the Americas--the
land Columbus discovered, and one from Asia—-the land Columbus tried to reach
and thought to have found. The lead ship selected for the Americas entry is
the Johns Hopkins University Applied Physics Laboratory "Sunflower”, a circular
solar sail held in a flat circle by a large hoop supported by guy wires from a
central mast. The sail has a diameter of 170 m and total mass of 180 kg. The
sa‘l is composed of 480 trianjular pieces of reflective foil arranged like the
petals of a flower. Some petals twist about their long axis to provide roll
torque. No long seams are used, making it easy to manufacture, and each petal
is individually unrolled by small deployment springs. Although the Columbus
500 Space Sail Cup Committee still has not obtained the funding required, the
project is continuing ahead.




Solar Photon Thrustor

In 1988, a new type of solar sail called a "sclar photon thrustor" (ref. 24)

was invented (it was later “>und to have been first described by A.P. Skoptsiv
of the USSR in 1971). The new sail concept is

improved in performance by separating the function of oollecting the solar
of reflecting the solar Fhotons (see Fig. 3).

collection of sunlight. The collector is modified in structure so it is a
light concentrator. The concentrated sunlight is directed to a reflecting
surface of much smaller mass, which redirects the light to provide net solar
photon thrust in the desired direction. Note that by tilting the reflecting
mirroc, the sunlight can be reflected in any desired angle off the axis formed
by the Sun-spacecraft line, while rotation of the whole spacecraft around the
Sun-spacecraft line allows direction of the reflected sunlight in azimuth
around the Sun-spacecraft line. To minimize undesired torques, the collecting
and reflecting portions of the system can be arranged so that the net force
passes through the center of mass of the total system including payload.
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Fig. 3 - Schematic of Generic Solar Photon Thrustor
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Since the collector of the sunlight in the Solar Photon Thrustor is always
facing the Sun no matter what the desired direction of thrust, the Solar Photon
Thrustor always operates in a maximm solar light power collection mode. This
is in contrast to a flat solar sail propulsion system where the collector and
reflector are the same sheet of reflecting material. In a flat solar sail
propulsion system, if the desired direction of thrust is not directly away from
the Sun, the sail must be tilted at some angle © with respect to the Sun-sail
line. Since the sail is tilted toward the Sun, the effective collecting area
of the flat solar sail propulsion system is decreased by an amount proportional
to 3in@. This means that the Solar Photon Thrustor always collects more solar
light power and therefore provides higher total sclar photon radiation pressure
force for the same area of collectocr. Since the mass of any optimized light
pressure propulsion system is dominated by the mass of the light ccllecting
area, that means that a Solar Photon Thrustor system will have better
performance in terms of maximum payload capability, maximum propulsive thrust,
and minimum mission time than flat solar sail propulsion systems. High solar
power concentration numbers are not needed for the Solar Photon Thrustor. A
concentration ratio of only 100:1 means that the area (and therefore the mass)
of the reflecting optics will be 1% of the area (and mass) of the collecting
optics and therefore a negligible portion of the total spacecraft mass.

The electrcmagnetic radiation does not have to stay in its original form.
For example, the collector could <ollect sunlight and concentr “e it on a solar
cell or thermal boiler electricai generation system. The el. icity generated
could be used to make microwave, laser, or other nseful ocoherent radiation,
which would be beamed down to Earth. The waste heat from the process would be
radiated away into space. Both the beamed coherent power and the radiated
waste heat would produce propulsive force of comparable magnitude to the
collected light. With proper system design, the beamed pcwer and waste heat,
along with the collected light, couid provide all the propulsion needed.

Richard Moss, M.D. of Plymouth, Massachusetts has found (ref. 25) that a
solar photon thrustor can be launched at shuttle altitudes. (Standard sails
can only operate above 1000 km altitude, where the light pressure force exceeds
the atmospheric drag.} If the solar photon thrustor is launched into a Sun-
synchronous orbit over the terminator, the large collector sail facing the Sun
will have minimum drag since it is flying edge-on to the residual atmosphere.
It only takes four days to go from Shuttle altitudes to a safe 1000 km drag-
free altitude.

Solar Sails for Manned Missions to Mars

John Garvey of McDonnell-Douglas has been reexamining the use of solar sails
for the manned exploration of Mars initiative. Prior studies by Carl Sauver of
JPL resulted in optimized trip times of 824.5 days (2.25 years) for an Earth to
Mars transfer. Garvey realized that most of that time was spent spiraling up
from LEO to escape, matching velocities with Mars with a sail tilt angle that
was almost edge-on to the Sun, and spiraling down from escape to IMO. By using
a mixture of chemical boost on departure, solar sail propulsion during
transfer, and aerobraking upon arrival, Garvey has found non-optimized mission
profiles of 150 days one way, with even shorter return trip times for the empty
sail. These short mission times cut the crew consumable weight drastically and
eliminate the need for artificial gravity.
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Garvey has also found a way to deploy a solar sail at Space Station
altitudes, where astronauts can help solve deployment problems. The deployment
is carried out at the end of a 100 km long upward-goino tether, with the sail
kept edge-on to the orbital motion to minimize drag. When the sail is
released, it will rise upward in an elliptical orbit to where it can turn to
the Sun and fly into space on its own power .

Bwotic Ocbits With Solar Sails

If a solar sail is made light enough, it can "hover" without orbiting--the
light pressure from the solar photons balancing the gravity attraction of the
Sun (and/or Earth). Colin McInnes of the Uriversity of Glasgow recently found
(ref. 26) a large family of solar sail orbits around the Sun that produce
neariy any desired orbital period (for example: zero--hovering anywhere over
the Sun, moving heliosynchronously with features on the solar surface, or
matching the orbital period of a plariet) at nearly any desired orbital
distance, in or out of the ecliptic plane. The light pressure from the Sun
modifies the orbital equations so much that the orbital period is nearly
independent of the orbital radius. For another example, James Early of
Lawrence Livermore National Labs describes in reference 27 a large solar sail
maintaining station between the Sun and the L2 point of the Earth. If the sail
were 2000 km in diameter (made of lunar material), it would block enough
sunlight (2%) to provide a technological solution to the greenhouse warming
problem.

Robert Forward of Forward Unlimited has discovered (ref. 28) light-
ievitated geosynchronous orbits around the Earth that are at 2quilibrium
positions north or south of the presently crowded equatorial geostationary
orbit. The orbital radii of these light-levitated orbits are slightly less
than the geostationary orbit radius, the center of the orbit is north (or
south) of the center of the Earth, but the orbital rotation rate of the
spacecraft matches that of the Earth's surface. Forward has also invented
(ref. 29) a new kind of spacecraft that uses solar sails to assume non-orbiting
equilibrium "polesitter" positions that allow communication, broadcast, or
weather spacecraft to continuously hover over the polar recions of the Earth
(or ary other planet in the solar system). Since these spacecraft do not
orbit, and therefore are not "satellites" of the Earth, the generic term of
"statite" has been coined for them. Forward Unlimited has filed worldwide
patents on the statite concept and is presently gathering private funding in
order to fly a demonstration model.

To properly appreciate the statite oconcept, it is important to realize that
all of the thousands of space objects presently in orbit around the Earth use
the centrifugal force generated by their orbital motion to balance the Earth's
gravitational force. By contrast, the statite is a space object that does not
use centrifugal force from orbital motion about the Earth to counteract any
significant portion of the Earth's gravitational force. 1Instead, the statite
uses a solar sail propulsion system to maintain the statite and its payload in
a desired fixed position adjacent to the Earth by balancing light pressure
force against the Earth's gravitaticn force.
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In most versions of the system, the statite is offset from the polar axis.
The statite stays fixed at a point above the dark side of the Earth, while the
Earth spins beneath it. The statite does not have to be positioned directly
opposite from the Sun. It can be placed anywhere over a large area on the dark
side of the Earth. This is in contrast to the single linear arc of the
equatorial geostationary orbit. From the viewpoint of an observer on the
rotating Earth, this version of the statite rotates around the pole once every
24 hours (a solar day). Thu , ground stations for communication with these
Statites must have their antenias on a polar mount with a 24 hour clock drive.
Since the distance between the ground station and the statite does not change
significant® r and the doppler shifts are very low, the electronics needed for
these versions of the system are nearly as simple as those at the fixed
position ground stations. There is an alternate version of the statite system
where the statite is kept directly over the North or South Pole of the spinning
Earth. To an observer on the Earth, the statite stays fixed above the pole
while the stars rotate around it. 1In these versions, the ground stations can
used fixed mounted antennas and simple fixed gain, fixed frequency electronics.

A typical distance of a statite from the center of the Earth is 30 to 100
Earth radii. The better the performance of the sail, the closer the balance
point. (For reference, geostationary orbit is at 6.6 Earth radii and the Moon
is at 63 Earth radii.) The round-trip delay time for 100 Earth radii is 4
seconds, making the statite more suitable for direct broadcast, fax, data, and
weather services than two-way telephone conversations. The advantages of the
statite concept are: it provides continuous service to a region using a single
Spacecraft without requiring a slot on the already crowded equatorial
geostationary orbit, and it provides continuous coverage to regions of the
Earth that are too close to the poles to use equatorial geostationary orbit
satellites. The disadvantages of the statite ooncept are: constant control is
required to maintain station, the round-trip link time is in seconds, and in
most versions the ground station antenna must rotate once a day.

MAGNETIC SAILS

Magnetic sails or "magsails" are a derivative form of solar sails that use
a completely different type of physical interaction with the Sun than solar
light pressure sails (ref. 30). Invented by Dana Andrews of Boeing Aerospace
and Robert Zubrin of Martin-Marietta Denver, a magsail is a simple loop of
high-temperature superconducting wire carrying a persistent current. The
charged particles in the solar wind are deflected by the magnetic field,
producing thrust. Although the thrust density in the solar ion wind flux is
five thousand times less than the thrust density in the solar photon flux, the
mass of a solar sail goes directly as the area, while the mass of the magsail
goes as the perimeter of the area enclosed. In addition, the effective cross-
sectional areca of the magnetic fields around the magsail is about a hundred
times the physical area of the loop. As a result, preliminary calculations
show the thrust-to-weight of a magsail can be an order of magnitude better than
A solar sail. Recent analyses indicate that a properly sun-shielded cable can
be passively maintained at a temperature of €5 K in space, well below the
Superconducting transition point for many of the new high-temperature
superconductors.




TETHERS

Tether propulsion a technology that will fly soon. NASA is funding Martin
Marietta to build the tether (2.5 mm diameter and 100 km long) and deployment
mechanism, while Italy is building the spacecraft that will fly at the end oif
the tether. The first exper iment, scheduled for 1991, will deploy the
spacecraft upward from the Shuttle on a conducting tether cable to demonstrate
power generation from the motioa of the conducting cable through the Earth's
magnetic field, By pumping current through the cable, thrust would be
generated by the "push" of the cable against the Earti's magnetic field. The
second flight will deploy an atmospher ic research spacecraft downward, where it
will fly through the upper atmosphere, too low for spacecraft and too high for
aircraft. The tether connection to the Shuttie spacecraft provides the
propulsion needed to overcome the drag. Ivan Bekey, formerly at NAsA
Headquarters and now on the National Space Council, has been championing the
use of tethers for many space applications (ref. 31 and 32), including throwing
payloads from LEO to GEO, electromagnetic propulsion using a conductive tether,
and momentum transfer through the Space Station. 1In the latter application, an
Orbital Transfer Vehicle is launched from an upward going tether at the same
time as the Space Shuttle deorbits from a down—going tether, all without using
any fuel. The Space Station is unaffected——it merely transfers energy and
momentum between the two vehicles. Paul Penzo of JPL has shown (ref. 33) it is
possible to use tethers to move payloads from planetary body to planetary body
(see Fig. 5), such as iow Martian orbit to low Earth orbit.
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tether in orbit around the moon or small airless planet (like the Moon or Mars)
can touch down to the surface six times an crbit, simultaneously dropping Off
and lifting up payloads weighing a reasonable fraction of the tether mass.
This concept is being reevaluated by Joseph Carroll of Tether Applications for
its potential impact on the Lunar Base initiative. Using the tether material
Spectra, which has improved properties over the more familiar Kevlar mater ial,
Carroll has done a preliminary design on an ambitious tether transport node
facility designed to provide a 1 km/s /\V to 10 ton payloads. To stay in
orbit, a typical facility mass should be at least 300 tons for 10 ton payloads,
but the 300 km long tether itself would only mass 7 tons. One tether facility
would be placed in a circular 400 km orbi%: and another in a highly elliptical
orbit with a 4:1 period resonance. As shown in Figure 6, payloads would be
picked up from a 150 km or lower earth orbit by the lower facility and tossed
into an intermediate elliptical orbit with an orbital period twice the lower
facility and half the upper facility. There the payloads would be picked up by
the higher facility and tossed to the Moon. At the Moon, the payloads would be
retrieved by a 200 ton, 1160 km diameter rotating tether and deposited on the
surface of the Moon. By arranging things so an equal amount of mass flows in
both directions, this system is self-powered. Bags of lunar dirt flowing down
the tether system into the deep Earth gravity well will be the "fuel® needed to
move payloads from LBO to the surface of the Moon.
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Fig. 6 - Schematic of Generic LEO-Lunar Sur face Tether Transport System
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Tether "Bootstrap® Propulsion

Geoffrey Landis at NASA/Lewis has shown in reference 35, how a spacecraft
starting in a low circular orbit about Earth can use a power supply and a long
tether "pushing" against the Earth's gravity gradient field to "bootstrap"
itself (and the tether) up the gravity well nearly to escape in less than a
month without using propellant. The basic concept is based on the fact that if
two halves of a spacecraft (or a spacecraft and its expended booster) are
extended on a long tether, the center-of-mass of the extended system shifts
slightly downward from the original center-of-mass and the orbital period
decreases. This shift in the center-of-mass occurs because the Earth's gravity
force causes an acceleration on the masses that varies as 1/r2, while the
counteracting centrifugal force due to orbital motion causes an acceleration
that varies as r. For very long tethers, the two forces no longer exactly
cancel at the two ends and there is a residual, second order, force which must
be balance. by a shift in the center of mass. When the tether is pulled in
again, the center-of-mass of the combined system raises upward.

As shown in Figure 7, by alternately extending and contracting the tether
at proper points in the orbit, the tether can be used to "pump" an initially
circular orbit into a highly elliptical orbit. Theoretically, if the initial
orbit is circular and at an altitude of greater than one earth radii (orbital
radius of greater than two earth radii or greater than 13,000 km), then the
final orbit can be an escape parabola. Note that the angular momentum of the
initial and final orbits are the same, SO no angular momentum needs to be
supplied. The energy of the escape parabola is much greater than the energy of
the initial circular orbit, so energy needs to be supplied, either from an
onboard power supply or by collecting externally supplied power. The final
configuration has the payload, tether, and counterweight flying off away from
the Earth at some residual velocity, so it has some linear momentum. To
conserve linear momentum, the tether has transferred linear momentum to the
Earth by coupling to the gravity tidal fields of the Earth through its extended
length. Although it lcoks like the system is "pulling itself up by its
| bootstraps", it is not. In effect, the tether is "climbing" out of the Earth's
| gravity well by coupling to the nonlinearities in the gravitational gradient
fields or gravity tides.

Unlike other tether propulsion concepts in the literature, where one mass
(the payload) is raised in orbit while another mass (the counterweight) is
lowered in orbit, the technique developed by Landis allows the center-of-mass
of the entire system to be raised from a low circular orbit into a high
elliptical orbit--conceptually into an escape orbit from Earth--without the use
of rockets or reaction mass. Energy is required, which can be supplied from an
onboard power supply, but no reaction mass is needed, and if the Earth-to-LEO
booster is used as a counterweight for the payload mass, the only weight
penalty is the mass of the tether (compared with the weight penalty of a LEO-
GEO booster rocket).
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Cable Catapult

A cable catapult is a new type of propulsion system proposed by Forward that
uses a long tether as a launch rail (ref. 36). As shown in Figure 8, the
tether cable is pointed in the desired direction of travel. A payload is
attached to a linear motor capable of traveling along the cable. The linear
motor accelerates along the cable until the payload reaches the desired launch
velocity, at which point the payload is released. The linear motor then
decelerates to a halt to await the arrival of an incoming payload.

PAYLOAD
LEAVES
P
A
o2 LINEAR MOTOR
3 DECELERATES TO STOP

WAITS FOR INCOMING
PAYLOAD

PAYLOAD SEPARATES
FROM LINEAR MOTOR

LINEAR MOTOR
ACCELERATES PAYLOAD
ALONG CABLE

Fig. 8 - Schematic of Generic Cable Catapult Concept

In the past, tethers have been considered for transporting payloads to and
from the Moon, Mars, and other bodies in the solar gystem. These tether
propulsion systems usually involved swinging or rotating tethers. Moravec has
shown that the maximum tip speed V of a rotating tether (and therefore the
maximum speed at which a rotating tether can launch a payload) is a function of
the "characteristic velocity" of the cable given by the square root of the
ratio ot the desifn tensile strength T to the density d of the material in the
tether or v=(T/d)1/2 and the ratio of the mass M of the tether to the mass m of
the payload. The exact expression is:

2 2
M 172 Vv V /v
-— = (1) —-——e er £ (V/2v)
m v




where erf is the error function (typically of order unity or less). This can
be compared to the ratio of the rocket mass to the payload mass of a rocket
where v is the "exhaust velocity" of the fuel.

Which is exponential in V/v, while the rotating cable mass ratio is exponential
in the square of V/v. 1In contrast, Forward has shown in reference 36, that the

ratio of the tether mass to the payload mass used in the cable catapult mode
varies as:

M2 2
—=V/n .
m

Because of the squared exponential growth of the mass of the tether in a
rotating tether system, the maximum launch velocity attainable for practical
launcher to payload mass ratios is three times the characteristic velocity of
the cable material or 3 km/s for a 1 km/s Kevlar cable. A cable catapult using
the same amount of cable material could give the payload a launch velocity of
30 times the cable characteristic velocity or 30 km/s. Improved cable
materials having higher characteristic velocities will allow interplanetary
travel at 30-100 km/s. This could shorten trip times to Mars from years to
months.

FAR FUTURE PROPULSION

Even more exotic propulsion concepts abound in the literature. Many
advanced nuclear propulsion concepts have been proposed that depend upon some
exotic physical process being found practical. For one example, George
Chapline of Lawrence Livermore National Lab has proposed a fission fragment
rocket using thousands of kilometers of americium ocoated fibers suspended on
dozens of rotating 100-meter-sized wheels as a combination fuel source and heat
radiator. Others hzve examined the propulsion applications of various
potential techniques for catalyzed cold fusion, using palladium, muons,
fractional charges, magnetic monopoles, and strange matter. None of these
fusion techniques look promising for propulsion, primarily since in most cases
the energy output is in the form of high energy neutrons, which are difficult
to turn into thrust except through an indirect thermalization process.

We do not lack new ideas to explore: some examples are studies on laser and
microwave pushed sails to the planets and stars (ref. 37 and 38), and
extracting laser power from the mesospheres of Mars, Venus, and maybe Earth
(ref. 4). Even further out are recent papers on negative matter propulsion
(ref. 29), space warps (ref. 40), and serious-but-skeptical studies of
Biefield-Brown field Propulsion and electrogravity induction field theor ies
(ref. 22).




SUMMARY POLEMIC

In this review I have discussed a number of exotic power and propulsion
techniques, ranging from eminently feasible to the wildly impossible. But it
is important for you, the reader, to realize that my main message is that we
don't need to wait for truly exotic technologies like metallic hydrogen,
antimatter, or space warps to improve the nation's space propulsion
capabilities by orders of magnitude increase in performance and orders of
magnitude decrease in cost. Chemical rocket propulsion is fine when the AV is
small, but for the more ambitious missions, this nation needs to put
substantial development funds into making real those advanced 3pace propulsion
technologies that have already shown their potential value in decade after
decade of paper studies.

Solar and nuclear electric propulsion should come first, not small systems
for secondary tasks like North-South station keeping or Space Station drag
makeup, but large megawatt and multimegawatt primary propulsion systems for OV
tugs, Earth-Lunar shuttles, and manned missions to Mars. Then solar sails,
first for communication, broadcast, and especially weather satellites that are
not limited to the equatorial geostationary orbital arc, second for scientific
monitoring stations hovering over the Sun, planets, and moons of the solar
system, and third for hauling cargo to and from Earth, the planets, and the
asteroid belt--without the expenditure of fuel.

Next should come rotovators made of long rotating Kevlar tethers that wils.
allow transport of massive quantities of material to and from low orbit to the
surface of planetary bodies such as the Moon, Mars, Mercury, and most of the
moons in the solar system——again without the use of fuel. Rotating tethers
around the Earth could also move massive amounts of material from LEO to GEO or
escape—-using no fuel in the process as long as the amount of material being
brought down the gravity well of Earth exceeds the amount being hauled up.

To get off the Earth and into LEO, we must either bite the political bullet
and push high-thrust hot hydrogen exhaust nuclear thermal rockets with their
radiation hazard, or stick with chemical rockets and their greenhouse hazard.
High thrust laser propulsion, either pulsed or CW, is an alternate choice with
its own set of operational and environmental problems that need engineer ing
demonstration, not another mile-high stack of paper studies.

Mission planners must use what they know works in order to plan a mission.
If future missions; such as a return to the Moon, or the manned exploration of
Mars, are to be made economically feasible, NASA needs to stop the interminable
peper studies and move into the development and demonstration of advanced forms
of space propulsion such as nuclear, electric, lightsail, tether, and laser
propulsion. That way, those mission planners will have some viable
alternatives to work with. Otherwise, thic nation is going nowhere in space.
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